Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(5): 953-956, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649629

RESUMO

Surface enhanced Raman spectroscopy (SERS) and stimulated Raman spectroscopy (SRS) are well established techniques capable of boosting the strength of Raman scattering. The combination of both techniques (surface enhanced stimulated Raman spectroscopy, or SE-SRS) has been reported using plasmonic nanoparticles. In parallel, waveguide enhanced Raman spectroscopy has been developed using nanophotonic and nanoplasmonic waveguides. Here, we explore SE-SRS in nanoplasmonic waveguides. We demonstrate that a combined photothermal and thermo-optic effect in the gold material induces a strong background signal that limits the detection limit for the analyte. The experimental results are in line with theoretical estimates. We propose several methods to reduce or counteract this background.

2.
Phys Chem Chem Phys ; 22(43): 24917-24933, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33135021

RESUMO

The increasing interest in atomic layer deposition (ALD) of Pt for the controlled synthesis of supported nanoparticles for catalysis demands an in-depth understanding of the nucleation controlled growth behaviour. We present an in situ investigation of Pt ALD on planar Si substrates, with native SiO2, by means of X-ray fluorescence (XRF) and grazing incidence small-angle X-ray scattering (GISAXS), using a custom-built synchrotron-compatible high-vacuum ALD setup and focusing on the thermal Pt ALD process, comprising (methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and O2 gas at 300 °C. The evolution in key scattering features provides insights into the growth kinetics of Pt deposits from small nuclei to isolated islands and coalesced worm-like structures. An analysis approach is introduced to extract dynamic information on the average real space parameters, such as Pt cluster shape, size, and spacing. The results indicate a nucleation stage, followed by a diffusion-mediated particle growth regime that is marked by a decrease in average areal density and the formation of laterally elongated Pt clusters. Growth of the Pt nanoparticles is thus not only governed by the adsorption of Pt precursor molecules from the gas-phase and subsequent combustion of the ligands, but is largely determined by adsorption of migrating Pt species on the surface and diffusion-driven particle coalescence. Moreover, the influence of the Pt precursor dose on the particle nucleation and growth is investigated. It is found that the precursor dose influences the deposition rate (number of Pt atoms per cycle), while the particle morphology for a specific Pt loading is independent of the precursor dose used in the ALD process. Our results prove that combining in situ GISAXS and XRF provides an excellent experimental strategy to obtain new fundamental insights about the role of deposition parameters on the morphology of Pt ALD depositions. This knowledge is vital to improve control over the Pt nucleation stage and enable efficient synthesis of supported nanocatalysts.

3.
Nanoscale ; 12(21): 11684-11693, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32441288

RESUMO

Downscaling of supported Pt structures to the nanoscale is motivated by the augmentation of the catalytic activity and selectivity, which depend on the particle size, shape and coverage. Harsh thermal and chemical conditions generally required for catalytic applications entail an undesirable particle coarsening, and consequently limit the catalyst lifetime. Herein we report an in situ synchrotron study on the stability of supported Pt nanoparticles and their stabilization using atomic layer deposition (ALD) as the stabilizing methodology against particle coarsening. Pt nanoparticles were thermally annealed up to 850 °C in an oxidizing environment while recording in situ synchrotron grazing incidence small angle X-ray scattering (GISAXS) 2D patterns, thereby obtaining continuous information about the particle radius evolution. Al2O3 overcoat as a protective capping layer against coarsening via ALD was investigated. In situ data proved that only 1 cycle of Al2O3 ALD caused an augmentation of the onset temperature for particle coarsening. Moreover, the results showed a dependence of the required overcoat thickness on the initial particle size and distribution, being more efficient (i.e. requiring lower thicknesses) when isolated particles are present on the sample surface. The Pt surface accessibility, which is decisive in catalytic applications, was analyzed using the low energy ion scattering (LEIS) technique, revealing a larger Pt surface accessibility for a sample with Al2O3 overcoat than for a sample without a protective layer after a long-term isothermal annealing.

4.
Phys Chem Chem Phys ; 22(21): 11903-11914, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436930

RESUMO

The reaction mechanism of the recently reported Me3AuPMe3-H2 plasma gold ALD process was investigated using in situ characterization techniques in a pump-type ALD system. In situ RAIRS and in vacuo XPS measurements confirm that the CH3 and PMe3 ligands remain on the gold surface after chemisorption of the precursor, causing self-limiting adsorption. Remaining surface groups are removed by the H2 plasma in the form of CH4 and likely as PHxMey groups, allowing chemisorption of new precursor molecules during the next exposure. The decomposition behaviour of the Me3AuPMe3 precursor on a Au surface is also presented and linked to the stability of the precursor ligands that govern the self-limiting growth during ALD. Desorption of the CH3 ligands occurs at all substrate temperatures during evacuation to high vacuum, occurring faster at higher temperatures. The PMe3 ligand is found to be less stable on a gold surface at higher substrate temperatures and is accompanied by an increase in precusor decomposition on a gold surface, indicating that the temperature dependent stability of the precursor ligands is an important factor to ensure self-limiting precursor adsorption during ALD. Remarkably, precursor decomposition does not occur on a SiO2 surface, in situ transmission absorption infrared experiments indicate that nucleation on a SiO2 surface occurs on Si-OH groups. Finally, we comment on the use of different co-reactants during PE-ALD of Au and we report on different PE-ALD growth with the reported O2 plasma and H2O process in pump-type versus flow-type ALD systems.

5.
Phys Chem Chem Phys ; 22(17): 9262-9271, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307490

RESUMO

The thermal and plasma-enhanced atomic layer deposition (ALD) growth of titanium oxide using an alkylamine precursor - tetrakis(dimethylamino)titanium (TDMAT) - was investigated. The surface species present during both the precursor and co-reactant pulse were studied with in situ reflection mid-IR spectroscopy (FTIR) and in vacuo X-ray photoelectron spectroscopy (XPS). The thermal process using H2O vapor proceeds through a typical ligand exchange reaction mechanism. The plasma-enhanced ALD processes using H2O-plasma or O2-plasma exhibit an additional decomposition and combustion reaction mechanism. After the plasma exposure, imine (N[double bond, length as m-dash]C) and isocyanate (N[double bond, length as m-dash]C[double bond, length as m-dash]O) surface species were observed by in situ FTIR. In addition, nitrites (NOx) were detected using in vacuo XPS during the O2-plasma process. This study presents the importance of the use of in situ FTIR and in vacuo XPS as complementary techniques to learn more about the ALD reaction mechanism. While in situ FTIR is very sensitive to changes of chemical bonds at the surface, exact identification and quantification could only be done with the aid of in vacuo XPS.

6.
Phys Chem Chem Phys ; 22(16): 9124-9136, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32301468

RESUMO

Atomic layer deposition (ALD) of noble metals is an attractive technology potentially applied in nanoelectronics and catalysis. Unlike the combustion-like mechanism shown by other noble metal ALD processes, the main palladium (Pd) ALD process using palladium(ii)hexafluoroacetylacetonate [Pd(hfac)2] as precursor is based on true reducing surface chemistry. In this work, a thorough investigation of plasma-enhanced Pd ALD is carried out by employing this precursor with different plasmas (H2*, NH3*, O2*) and plasma sequences (H2* + O2*, O2* + H2*) as co-reactants at varying temperatures, providing insights in the co-reactant and temperature dependence of the Pd growth per cycle (GPC). At all temperatures, films grown with only reducing co-reactants contain a large amount of carbon, while an additional O2* in the co-reactant sequence helps to obtain Pd films with much lower impurity concentrations. Remarkably, in situ XRD and SEM show an abrupt release of the carbon impurities during annealing at moderate temperatures in different atmospheres. In vacuo XPS measurements reveal the remaining species on the as-deposited surface after every exposure. Links are established between the particular surface termination prior to the precursor pulse and the observed differences in GPC, highlighting hydrogen as the key growth facilitator and carbon and oxygen as growth inhibitors. The increase in GPC with temperature for ALD sequences with H2* or NH3* prior to the precursor pulse is explained by an increase in the amount of hydrogen species that reside on the Pd surface which are available for reaction with the Pd(hfac)2 precursor.

7.
Nanomaterials (Basel) ; 9(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581547

RESUMO

Surface-Enhanced Raman Spectroscopy (SERS) allows for the highly specific detection of molecules by enhancing the inherently weak Raman signals near the surface of plasmonic nanostructures. A variety of plasmonic nanostructures have been developed for SERS signal excitation and collection in a conventional free-space microscope, among which the gold nanodomes offer one of the highest SERS enhancements. Nanophotonic waveguides have recently emerged as an alternative to the conventional Raman microscope as they can be used to efficiently excite and collect Raman signals. Integration of plasmonic structures on nanophotonic waveguides enables reproducible waveguide-based excitation and collection of SERS spectra, such as in nanoplasmonic slot waveguides. In this paper, we compare the SERS performance of gold nanodomes, in which the signal is excited and collected in free space, and waveguide-based nanoplasmonic slot waveguide. We evaluate the SERS signal enhancement and the SERS background of the different SERS platforms using a monolayer of nitrothiophenol. We show that the nanoplasmonic slot waveguide approaches the gold nanodomes in terms of the signal-to-background ratio. We additionally demonstrate the first-time detection of a peptide monolayer on a waveguide-based SERS platform, paving the way towards the SERS monitoring of biologically relevant molecules on an integrated lab-on-a-chip platform.

8.
ACS Appl Mater Interfaces ; 11(40): 37229-37238, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31523948

RESUMO

A plasma-enhanced atomic layer deposition (PE-ALD) process to deposit metallic gold is reported, using the previously reported Me3Au(PMe3) precursor with H2 plasma as the reactant. The process has a deposition window from 50 to 120 °C with a growth rate of 0.030 ± 0.002 nm per cycle on gold seed layers, and it shows saturating behavior for both the precursor and reactant exposure. X-ray photoelectron spectroscopy measurements show that the gold films deposited at 120 °C are of higher purity than the previously reported ones (<1 at. % carbon and oxygen impurities and <0.1 at. % phosphorous). A low resistivity value was obtained (5.9 ± 0.3 µΩ cm), and X-ray diffraction measurements confirm that films deposited at 50 and 120 °C are polycrystalline. The process forms gold nanoparticles on oxide surfaces, which coalesce into wormlike nanostructures during deposition. Nanostructures grown at 120 °C are evaluated as substrates for free-space surface-enhanced Raman spectroscopy (SERS) and exhibit an excellent enhancement factor that is without optimization, only one order of magnitude weaker than state-of-the-art gold nanodome substrates. The reported gold PE-ALD process therefore offers a deposition method to create SERS substrates that are template-free and does not require lithography. Using this process, it is possible to deposit nanostructured gold layers at low temperatures on complex three-dimensional (3D) substrates, opening up opportunities for the application of gold ALD in flexible electronics, heterogeneous catalysis, or the preparation of 3D SERS substrates.

9.
Opt Lett ; 44(5): 1112-1115, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821783

RESUMO

Silicon nitride (SiN) is currently the most prominent CMOS-compatible platform for photonics at wavelengths <1 µm. However, realizing fast electro-optic (EO) modulators, the key components of any integrated optics platform, remains challenging in SiN. Modulators based on the plasma dispersion effect, as in silicon, are not available. Despite the fact that significant second-harmonic generation has been reported for silicon-rich SiN, no efficient Pockels effect-based modulators have been demonstrated. Here we report the back-end CMOS-compatible atomic layer deposition (ALD) of conventional second-order nonlinear crystals, zinc oxide, and zinc sulfide, on existing SiN waveguide circuits. Using these ALD overlays, we demonstrate EO modulation in ring resonators.

10.
Phys Chem Chem Phys ; 20(39): 25343-25356, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30259938

RESUMO

Thermal atomic layer deposition (ALD) and plasma-enhanced ALD (PE-ALD) of Pt, using MeCpPtMe3 as the precursor and O2 gas or O2 plasma as the reactant, are studied with in situ reflection Fourier transform infrared spectroscopy (FTIR) at different substrate temperatures. This is done to identify the functional groups present during Pt ALD and investigate the origin of the temperature dependent growth rate of the thermal process. Evidence is given that CH and C[double bond, length as m-dash]C containing species are present on the surface after precursor exposure at low substrate temperatures (<150 °C), poisoning the surface during thermal ALD. Both species are removed by O2 plasma enabling PE-ALD below 150 °C through combustion reactions. Above 150 °C, no CH stretching modes were detected and the C[double bond, length as m-dash]C vibration diminished, indicating dehydrogenation reactions and ligand restructuring. In addition, the PE-ALD FTIR spectra revealed the presence of combustion reaction products on the surface after precursor exposure. These were removed during the reactant exposure and during this exposure the formation of surface OH groups was found for both high and low substrate temperatures. We conclude that the decrease in the growth rate for the thermal process is caused by the inability of the surface to properly dehydrogenate and restructure the poisoning precursor ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...